НАУЧНО-ТЕХНИЧЕСКИЙ АНАЛИЗ КОНКУРСНЫХ ПРОЕКТОВ, ПРЕДСТАВЛЕННЫХ НА КОНКУРСЫ НА ПРОВЕДЕНИЕ НИР И ВЫПОЛНЕНИЕ ТЕХНОЛОГИЧЕСКИХ И ОПЫТНО-КОНСТРУКТОРСКИХ РАБОТ В РАМКАХ ФЦП «ИССЛЕДОВАНИЯ И РАЗРАБОТКИ ПО ПРИОРИТЕТНЫМ НАПРАВЛЕНИЯМ РАЗВИТИЯ НАУЧНО-ТЕХНОЛОГИЧЕСКОГО КОМПЛЕКСА РОССИИ НА 2007 — 2012 ГОДЫ» ПО НАПРАВЛЕНИЮ «ИНДУСТРИЯ НАНОСИСТЕМ И МАТЕРИАЛЫ». НОВЫЕ МЕТОДОЛОГИЧЕСКИЕ АКЦЕНТЫ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ПЕРСПЕКТИВНОГО НАПРАВЛЕНИЯ «ИНДУСТРИЯ НАНОСИСТЕМ И МАТЕРИАЛЫ»

Ю.С. Севастьянов, В.П. Голубев, Д.Г. Победимский, Н.Е. Лазаренко

Анализ в рамках настоящей работы всей совокупности лотов нескольких очередей перспективного направления «Индустрия наносистем и материалы» (далее — ИН) показывает, что наносистемы и нанотехнологические производства обладают базовым признаком — являются ключевыми объектами инвестиций в рамках ФЦП.

Рассмотрим оценки представленных проектов, относящихся к статусу НИР — работ по проведению *проблемно-ориентированных поисковых исследований и созданию научно-техничес-кого задела* в области индустрии наносистем и материалов (ИН-2007 VIII, IX, X, XI очереди; Мероприятие 1.3 Программы).

Объектами исследования были следующие лоты и соответствующие им «критические технологии»:

ИН-VIII очередь:

- лот 1. 2007-3-1.3-00-02 «Проблемно-ориентированные поисковые исследования (ПОПИ) с участием иностранных научных организаций в области ИН»;
- лот 2. 2007-3-1.3-00-03 «ПОПИ совместно с иностранными организациями в области ИН в рамках соглашений и договоров со странами ЕС, Китаем и Израилем». Задание 1; ИН-IX очередь:
- лот 1. 2007-3-1.3-00-04 «ПОПИ и создание научно-технического задела по перспективным технологиям в области ИН для последующей коммерциализации на основе партнерства университетов с малыми инновационными компаниями». Задание 2;

ИН-Х очерель:

- лот 2. 2007-3-1.3-07-14 - «Исследование и разработка способов распознавания взрывчатых веществ на основе комплекса физико-химических диагностических методов». Задание 3;

ИН-XI очередь:

- лот 1. 2007-3-1.3-28-06 «Разработка новых принципов создания средств индивидуальной защиты на основе современных защитных материалов»;
- лот 2. 2007-3-1.3-07-15 «Работы по проведению ПОПИ и созданию научно-технического задела в области ИН по критической технологии "Нанотехнологии и наноматериалы"». Задание 4.

Анализ по заданию 1. По лоту 1. 2007-3-1.3-00-02 рекомендованы 32 организации в качестве победителей из общего числа 37 организаций с бюджетным финансированием в сумме 1,5 млн руб.

По лоту 2. 2007-3-1.3-00-03 рекомендовано 6 организаций в качестве победителей из общего числа 22 организаций с бюджетным финансированием в сумме 10 млн руб. на 2007—2008 гг. Приведена таблица в качестве иллюстрации спектра победителей (табл. 1).

Анализ по заданию 2. Всего было рассмотрено 54 заявки. На основании анализа их конкурентной значимости рекомендовано в качестве победителей 10 организаций с суммой бюджетного финансирования 8 млн руб. на период 2007—2008 гг. В таблице приведены параметры организаций-победителей (табл. 2).

Таблица 1

				Стоимос	ть контракт	а, млн руб.	Объем с	редств из вне источниког	
№ п/п	Регистраци- оиный номер заявки	Наименование участника размещения заказа	Почтовый адрес	Бюд- жетные средс- тва, всего	Бюд- жетные средства, 2007	Бюд- жетные средства, 2008	Объем средств из внебюд-жетных источников, всего	Объем средств из внебюд-жетных источников, 2007 г.	Объем средств из внебюд-жетных источников, 2008 г.
1	2007-3-1.3-00- 03-016	Федеральное государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный университет» Соисполнители: Институт кристаллографии им. А.В. Шубникова РАН; ФГУ РНЦ «Курчатовский институт»	199034, Санкт-Пе- тербург, Универси- тетская наб., 7/9	10	4,5	5,5	10	4,5	5,5
2	2007-3-1.3-00- 03-032	Государственное образовательное учреждение высшего профессионального образования «Московский государственный институт радиотехники, электроники и автоматики (технический университет)»	119454, Москва, пр-т Вернад- ского, 78	9,8	4,9	4,9	10	5	5
3	2007-3-1.3-00- 03-068	Государственное образовательное учреждение высшего профессионального образования «Российский химикотехнологический университет имени Д.И. Менделеева»	125047, Москва, Миусская пл., 9	10	5	5	10	5	5
4	2007-3-1.3-00- 03-030	Федеральное государственное учреждение «Российский научный центр "Курчатовский институт"»	123182, Москва, пл. Академика Курчатова, 1	10	3,176	6,824	10,5	5,25	5,25
5	2007-3-1.3-00- 03-015	Открытое акционерное общество «Акционерная хол- динговая компания "Всероссийский научно-иссле- довательский и проектно-конструкторский институт металлургического машиностроения им. академика А.И. Целикова"» Соисполнители: ООО «МЕЛДИС», ООО «СВАРМЕТ», технопарк «Дружба»	109428, Москва, Рязанский пр-т, 8а	10	5	5	10	5	5
6	2007-3-1.3-00- 03-034	технопарк «дружов» Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А. В. Толчиева Российской академии наук Соисполнители: Институт проблем химической физики РАН; ОАО «Аквасервис»; ЗАО «Техноконсалт»	119991, Москва, Ленинский пр-т, 29	10	5	5	10	5	5

Анализ по заданию 3. По заданию 3 выдано к рассмотрению 3 заявки из ИХФ РАН, НПК «Технологический центр» МИЭТ и ОАО «НТЦ «РАТЭК». Рекомендовано 2 организации в качестве победителей с суммой финансирования 7 млн руб. на период 2007—2008 гг.:

- 1. Институт химической физики им. Н.Н. Семенова Российской академии наук. Соисполнитель: ГОУ ВПО «Российский химико-технологический университет им. Д.И. Менделеева». Тема работ: «Исследование и разработка способов обнаружения и распознавания взрывчатых веществ на основе комплекса спектральных методов анализа их летучих компонентов в воздухе и следов на поверхности с использованием механизма предварительного селективного концентрирования молекул наноразмерными молекулярными ловушками».
- 2. Научно-производственный комплекс «Технологический центр» Московского государственного института электронной техники. Соисполнитель: ООО «Инновационный центр новых технологий». Тема работ: «Разработка методов приема и обработки информации в рентгено-телевизионном интроскопе и ядерно-квадрупольно-резонансном детекторе, как составных частях комплекса диагностических методов и средств обнаружения взрывчатых веществ».

По мнению экспертов, работы заявителей будут иметь прямое отношение к системе мер по предотвращению терроризма и детекции сопровождающих явлений.

Анализ по заданию 4. Рассмотрены детально заявки по лоту 2 на тему «Проведение проблемно-ориентированных поисковых исследований и создание научно-технического задела в области индустрии наносистем и материалов».

Таблица 2

				Стоимох	сть контракта,	млн руб.	Объем средств из внебюджетных источников				
№ п/п	Регистрацион- ный номер заявки	Наименование участника размещения заказа	Почтовый адрес	Бюджетные средства, всего	Бюджетные средства, 2007	Бюджетные средства, 2008	Объем средств из внебюджетных источников, всего	Объем средств из внебюджетных источников, 2007 г.	Объем средств из внебюджетных источников, 2008 г.		
1	2007-3-1.3-00- 04-008	Государственное образовательное учреждение высшего профессионального образования «Новосибирский государственный университет» Соисполнитель: ЗАО «Техноскан — Лазерные системы»	630090, Новоси- бирск, ул. Пирого- ва, 2	7,8	3	4,8	1,56	0,56	i		
2	2007-3-1.3-00- 04-053	Государственное образовательное учреждение высшего профессионального образования «Казанский государственный технический университет им. А.Н. Туполева» Соисполнители: ОАО «Научно-исследовательский институт авиационной технологии»; ООО «Фирма МВЕН»	420111, Респ., Татарстан, Казань, Карла Маркса, 10	8	4	4	1,1	0,55	0,55		
3	2007-3-1.3-00- 04-051	Государственное образовательное учреждение высшего профессионального образования «Московский государственный институт электронной техники (технический университет)» Соисполнитель: ОАО «Зеленоградский инновационно-технологический центр»	124498, Зеленог- рад, проезд 4806, 5	8	4	4	1,5	0,75	0,75		
4	2007-3-1.3-00- 04-057	Государственное образовательное учреждение высшего профессионального образования «Южно-Российский государственный технический университет (Новочеркасский политехнический институт)» Соисполнитель: ООО «Научно-производственное предприятие «Донские технологии»	346428, Ростовс- кая обл., Новочер- касск, ул. Просве- шения, 132	7,8	3,9	3,9	6,2	3,1	3,1		
5	2007-3-1.3-00- 04-043	Государственное учебно-научное учреждение «Международный учебно-научный лазерный центр Московского государственного университета им. М.В.Ломоносова» Соисполнитель: ОАО «Завод ПРОТОН-МИЭТ»	119992, Москва, Воробъевы Горы, 1	8	4		1,143	0,577	0,566		
6	2007-3-1.3-00- 04-029	Государственное образовательное учреждение высшего профессионального образования «Московский государственный индустриальный университет» Соисполнители: Институт проблем технологии микроэлектроники и особочистых материалов РАН; ООО «Лазер-Беседы»	109280, Москва, ул. Автозавод- ская, 16	8	4	4	1,1	0,55	0,55		
7	2007-3-1.3-00- 04-032	Государственное образовательное учреждение высшего профессионального образования «Алтайский государственный технический университет им. И.И. Ползунова» Соисполнитель: ООО «Центр развития технологий-Алтай»	Алтайский	8	3	5		0,4	0,7		
8	2007-3-1.3-00- 04-025	Государственное образовательное учреждение высшего профессионального образования «Московский государственный строительный университет»	129337, Москва, Ярославс- кое ш., 26	7,6	3,8	3,8	1,2	0,6	0,6		
9	2007-3-1.3-00- 04-026	Государственное образовательное учреждение высшего профессионального образования «Московский инженерно-физический институт (государственный университет)»	115409, Москва, Каширское ш., 31	8	4	4	1,3	0,65	0,65		
10	2007-3-1.3-00- 04-014	Государственное образовательное учреждение высшего профессионального образования «Московский государственный технический университет им. Н.Э. Баумана»	105005, Москва, ул.2-я Бау- манская, 5	8	4	4	1,1	0,55	0,55		
		Соисполнитель: ЗАО «ИНКОММЕТ»									

На экспертизу представлено 62 заявки на участие в конкурсе по мероприятию 1.3 Программы — лот 2. 2007-3-1.3-07-15. В результате комплексной оценки по алгоритму экспертной анкеты Дирекции ФЦП экспертом выявлено 4 победителя конкурса (с учетом лимитов финансирования и числа участников-победителей), материалы заявок которых полностью соответствуют критериям оценки, при этом обоснование потенциального инновационного продукта по заявке представлялось достаточным. Рейтинг группы заявок-победителей определялся из интервала баллов: 310—320.

Для представления общей картины среди заявок ожидаемых победителей можно привести следующие характеристики:

- 1. Заявки направлены на проведение проблемно-ориентированных поисковых исследований и создание научно-технического задела в области индустрии наносистем и материалов (мероприятие 1.2 Программы).
- 2. Заявляемые исследования посвящены актуальным проблемам наносистем и нанотехнологий на их основе и технологий разнообразных приложений в сферах информатики, электроники, медицины и живых систем, технических материалов нового поколения, нанообъектов в смежных областях науки и инноваций.
- 3. Заявители-победители представляют следующие регионы страны: Новосибирскую обл. и г. Москву.
- 4. По совокупности требований к конкурсному заданию первые четыре по рейтингу заявки отвечают им в наибольшей мере: 2007-3-1.3-07-15-001 ИНХС им. А.В. Топчиева РАН (320 баллов; «Новые нанокатализаторы ионно-координационной полимеризации олефинов и диенов, превосходящие лучшие мировые аналоги»), 2007-3-1.3-07-15-076 ИВТАН РАН (319 баллов; «Разработка научных основ технологии получения композитных наночастиц и наноматериалов в низкотемпературной плазме»), 2007-3-1.3-07-15-007 ФГУН ГНЦ вирусологии и биотехнологии «Вектор» Роспотребнадзора (313 баллов; «Конструирование нанобиочастиц носителей терапевтических средств для доставки к клеткам-мишеням и оценка их безопасности») и 2007-3-1.3-07-15-036 ИРЭ РАН (310 баллов; «Разработка новых композитных полимерных наноматериалов, структурированных наночастицами, с целью создания нового поколения экранирующих и радиопоглощающих покрытий, а также эффективных расходомеров жидкости и газа»).

Заявки подкрепляются статусом известной на мировом уровне ведущей научной школы и продолжительно существующего консорциума (коллектива исполнителей) академического института, его вузовских партнеров и научно-производственного предприятия. Научно-техническое обоснование всех четырех заявок представляется достаточно высоким, эти предложения имеют хорошие перспективы вырасти в крупные системные инновационные решения, что очень важно для промышленной наноиндустрии, для выпуска давно ожидаемой рынком продукции и особенно для здравоохранения России в целом.

Далее рассмотрим оценки представленных на экспертизу комплексных проектов, относящихся к статусу развитых TP — разработок научно-технологических основ производства наноразмерных материалов и изделий широкого спектра применения (ИН-2007 III, V и VI очереди; мероприятие 2.3 Программы).

Рассмотрение и оценка заявок на участие в конкурсе на выполнение комплексных проектов в рамках ФЦП основаны на лоте 2. 2007-3-2.3-07-11 «Разработка базовых технологических процессов и оборудования для исследований и опытного производства приборов нано-электроники, оптоэлектроники и микросистемной техники».

Учитывая соответствие заявки № 2007-3-2.3-07-11-002 требованиям и условиям, предусмотренным конкурсной документацией по лоту 2. 2007-3-2.3-07-11 «Разработка базовых технологических процессов и оборудования для исследований и опытного производства приборов наноэлектроники, оптоэлектроники и микросистемной техники», эксперты рекомендовали в качестве победителя предложение ЗАО «Научное и технологическое оборудование», подавшего единственную заявку на участие в конкурсе.

Более развернутый комплект заявок представлен в заказе на экспертизу в рамках перечня заявок по мероприятию 2.3 Программы — ИН-III очередь.

Объектами исследования были следующие лоты:

- лот 1. 2007-3-2.3-07-03 «Разработка методов наноструктурной диагностики срока службы теплостойких сталей, эксплуатируемых длительное время в экстремальных условиях в составе ответственных конструкций»;
- лот 2. 2007-3-2.3-07-04 «Разработка конструкции и технологии изготовления сверхмощных светоизлучающих кристаллов на основе инверсных GaN-гетероструктур»;
- лот 4. 2007-3-2.3-24-01 «Разработка промышленной ресурсосберегающей технологии деформируемых структурно-композиционных наноструктурированных магнитотвердых материалов с улучшенными эксплуатационными характеристиками и с пониженным содержанием кобальта»;
- лот 5. 2007-3-2.3-24-02 «Технологии и оборудование для производства деталей машин из наноструктурных оксидных керамик в экстремальных условиях эксплуатации»;
- лот 6. 2007-3-2.3-26-01 «Разработка технологии и организация производства сверхпрочных и высокомодульных углеродных волокон на основе ПАН-жгутов и ПАН-нитей из СВМПАН»;
- лот 8. 2007-3-2.3-00-02 «Разработка конкурентоспособных технологий и создание опытно-промышленного производства подложек лейкосапфира, карбидокремния и нитрида галлия для приборов оптоэлектроники и электроники»;
- лот 9. 2007-3-2.3-07-06 «Разработка технологии наномодифицирования текстильных материалов наночастицами металлов»;
- лот 11. 2007-3-2.3-00-03 «Разработка опытно-промышленных технологий получения нового поколения медицинских имплантантов на основе титановых сплавов».

В перечисленные лоты входило определенное число заявок, удовлетворяющих требованиям конкурсной документации:

```
- лот 1 - 1 заявка:
```

- лот 2 2 заявки;
- лот 4 1 заявка;
- лот 5 2 заявки;
- лот 6 3 заявки;
- лот 8 2 заявки:
- лот 9 3 заявки:
- лот 11 2 заявки:

всего: 16 заявок.

При лимите бюджетного финансирования на всех участников конкурса по лотам 1-11 потенциальное число победителей было определено Конкурсной комиссией и составило соответственно: для каждого лота по 1-й организации (в лоте 4 победитель отклонен по существенным замечаниям). Среди 7 организаций-победителей можно отметить: лоты 1 и 9 – Курчатовский институт, лот 2 – 3AO «ЭПИ-ЦЕНТР», лот 5 – обнинское НПП «Технология», лот 6 – ГНЦ НИИграфит, лот 8 – OOO «Полупроводниковые кристаллы» (СПб), лот 11 – Белгородский университет.

Только 7 работ (или $7/16 \times 100 = 44\%$), соответствующих в полной мере условиям конкурса, смогли рассчитывать на финансирование из бюджета с целью выполнения НИР в рамках направления ИН (ИН-2007 — III очередь).

Лидирующими организациями в прединновационных исследованиях и разработках стали Курчатовский институт и ГНЦ НИИграфит. Эксперты, исходя из оценок по конкурентоспособности, рекомендуют усилить конкурсное наполнение направлений «Разработка технологии и организация производства сверхпрочных и высокомодульных углеродных волокон на основе ПАН-жгутов и ПАН-нитей из СВМПАН», «Разработка технологии наномодифицирования текстильных материалов наночастицами металлов» и «Разработка опытно-промыш-

ленных технологий получения нового поколения медицинских имплантантов на основе титановых сплавов».

К мероприятию 2.3 экспертами также отнесен лот 3. 2007-3-2.3-22-01 (ИН-VI очередь) по теме: «Создание технологии обработки натуральных волокнистых материалов и изделий из них, обеспечивающей высокие защитные свойства при воздействии биологически активных сред».

На экспертизу в рамках этой ИН-очереди представлено 2 заявки на участие в конкурсе. В результате комплексной оценки по алгоритму экспертной анкеты Дирекции ФЦП экспертами выявлен 1 победитель конкурса (с учетом лимитов финансирования и числа участниковпобедителей), материалы заявки которого полностью соответствуют критериям оценки, при этом обоснование потенциального инновационного продукта по заявке представлялось достаточным. Рейтинг группы заявок-победителей определялся из интервала баллов: 415—420.

Для представления общей картины среди заявок — ожидаемых победителей можно привести следующие характеристики:

- 1. Заявки направлены на проведение работ по созданию технологии обработки натуральных волокнистых материалов и изделий из них, обеспечивающей высокие защитные свойства при воздействии биологически активных сред (мероприятие 2.3 Программы).
- 2. Заявляемые исследования посвящены актуальным проблемам создания биосовместимых материалов для жизнеобеспечения и защиты человека и животных и другим смежным исследованиям в сфере живых систем и сфере ИН.
- 3. Заявитель-победитель представляет следующий регион страны: Казань, Республика Татарстан, технологический вуз федерального значения.
- 4. По совокупности требований к конкурсному заданию заявка № 001 подкрепляется статусом реально и продолжительно существующего консорциума (коллектива исполнителей) вузовского университета, его академических партнеров и научно-производственного предприятия. Научно-техническое обоснование этой заявки представляется достаточно высоким, предложение КГТУ имеет хорошие перспективы вырасти в крупные системные инновационные решения, что очень важно для промышленной легкой индустрии, для выпуска давно ожидаемой рынком продукции и для здравоохранения России в целом.

Реализация госконтракта с КГТУ обеспечит в ближайшем будущем получение крупных системных научно-технологических и коммерчески значимых результатов, способствующих развитию комплекса отечественных медицинских технологий, что заметно усилит существующую научно-технологическую и кадровую базу России.

Для иллюстрации будущей деятельности КГТУ как получателя госконтракта можно привести следующие характеристики его проекта.

В проекте КГТУ поставлена актуальная задача повышения качества выпускаемой отечественной продукции с минимальным увеличением себестоимости. В частности, в легкой промышленности актуальной является проблема улучшения свойств натуральных кожи и меха.

Основой технологии производства кожи и меха являются жидкостные процессы и механические воздействия. В результате химического и физического воздействий происходит структурирование белков дермы и изменение физико-механических и физико-химических свойств полуфабрикатов во всем объеме материала.

Для достижения максимального изменения эксплуатационных и потребительских свойств, натуральные высокомолекулярные волокнистые материалы нужно модифицировать не только на наружной поверхности, но и во всем объеме, как в традиционных технологиях производства кожи и меха. Традиционные методы модификации кожевенно-меховых материалов практически исчерпали свои возможности. Одним из новых способов повышения качества и устойчивости к различным воздействиям натуральных высокомолекулярных волокнистых материалов является применение ВЧ-плазмы пониженного давления.

Результаты исследований, выполненных в последнее время, показывают, что в отличие от других видов неравновесной низкотемпературной плазмы, обработка с помощью ВЧ-плазмы пониженного давления позволяет производить объемную модификацию пористых материа-

лов, в результате чего происходят такие изменения физико-механических характеристик, которые получить другими методами невозможно. В частности, обработка ВЧ-плазмой пониженного давления позволяет улучшить одновременно несколько свойств материала, не ухудшая остальные свойства. Это дает основание предложить возможность применения ВЧ-плазмы пониженного давления в процессах выделки кожевенно-меховых материалов.

Работа направлена на решение практически важной и технологически актуальной проблемы— создание новой технологии физической модификации высокомолекулярных волокнистых материалов путем воздействия неравновесной низкотемпературной плазмы на наноструктуру животных белков.

Целью работы является создание технологии обработки натуральных волокнистых материалов и изделий из них, обеспечивающей высокие защитные свойства при воздействии биологически активных сред.

Работа направлена на разработку следующих конкурентоспособных технологий:

- высокоэффективных ресурсосберегающих технологий производства натуральных высокомолекулярных волокнистых материалов с регулируемыми свойствами, позволяющих сократить продолжительность жидкостных процессов и снизить расход химических материалов, что приведет к уменьшению экологической нагрузки кожевенно-мехового производства на окружающую среду;
- технологии получения коллагеносодержащего материала с применением плазменной обработки, позволяющей получить кожу с улучшенными, по сравнению с существующими, эксплуатационными и технологическими свойствами;
- технологии получения меха с применением плазменной обработки, позволяющей получить как коллагеносодержащий, так и кератиносодержащий высокомолекулярный волокнистый материал с улучшенными, по сравнению с существующими, эксплуатационными и технологическими свойствами.

Данные технологии будут использоваться на малых предприятиях, осуществляющих производственную деятельность в рамках Поволжского бизнес-инкубатора легкой промышленности, являющегося структурным подразделением научно-технологического парка КГТУ.

Полуфабрикаты, полученные по разработанным технологиям, будут обладать улучшенными технологическими, потребительскими и эксплуатационными свойствами по сравнению с произведенными по типовым технологиям. Так, например, у кожевенных материалов повысится температура сваривания на 5-10 %, пористость на 25-30 %, прочность при растяжении на 12-20 %; у меховых материалов повысится температура сваривания на 3-6 %, пористость на 13-28 %, прочность при растяжении на 10-13 %. Кроме этого, применение ВЧ-плазмы пониженного давления позволит интенсифицировать жидкостные процессы при производстве кожевенного и мехового полуфабриката на 20-30 %.

По совокупности требований к конкурсному заданию рассматриваемая заявка отвечает им в полной мере, научно-техническое обоснование представляется достаточно высоким, предложение имеет хорошие перспективы вырасти в значительное инновационное решение, что очень важно для материаловедения и инженерии в индустрии кожи и меха. Именно поэтому эксперты рекомендовали заявку 2007-3-2.3-22-01-001 в качестве победителя по лоту 3. 2007-3-2.3-22-01 с рейтингом — 1-е место из двух.

Обобщение анализа. Наиболее высокая оценка и степень конкурентоспособности достигаются для представленных проектов, относящихся к статусу развитых TP — разработок научно-технологических основ производства наноразмерных материалов и изделий широкого спектра применения (ИН-2007—очереди III, V и VI).

Выводы по анализу: 1. Работы — лидеры по комплексу научно-исследовательских проектов и научно-технологических проектов по мероприятию Программы 1.3 ИН — 2007 — VIII, IX, X очереди соответствуют по предполагаемому исполнению лучшим мировым стандартам.

Создаваемый научно-технический задел должен обеспечить в будущем проведение ОКР и ТР на конкурентном уровне. Результаты работ будут способствовать дальнейшему инноваци-

онному развитию российских технологий в данном приоритетном направлении Программы – ИН (мероприятие 2.3 — очереди III, V, VI).

Аналогично можно проанализировать проекты и других направлений ФЦНТП. Использованная методология оценки проектов [1, 2] по направлению «Индустрия наносистем и материалы» показала ориентацию тематики конкурса на проведение фундаментальных, прикладных и инновационных исследований, которые должны обеспечить научную и технологическую базу для прорыва по важнейшим проблемам нанофизики, нанотехнологии и нанохимии.

2. Высокое качество и потенциально высокая результативность проектов — лидеров нанонаправления ФЦНТП коррелирует с объявленным Роснауки (ФАНИ) предложением о создании и функционировании новой федеральной нанотехнологической программы.

Как результат этой инициативы в государственной инновационной политике произошли знаменательные изменения. Они были основаны на том, что в настоящее время перспективное направление «Индустрия наносистем и материалы» ФЦП на 2007—2012 гг. вышло за рамки предыдущей Федеральной программы научно-технологической направленности и особо важные его части вошли в рамки новой ФЦП «Развитие инфраструктуры наноиндустрии в Российской Федерации на 2008—2010 гг.» (постановление Правительства Российской Федерации от 2 августа 2007 г. № 498).

Не будем раскрывать сущность и детали этой 2-й важнейшей программы научно-технического прогресса в сфере наноиндустрии, фактически имеющей статус Национального проекта развития наноиндустрии и сравнимой лишь с атомным и космическим проектами СССР. Отметим лишь цель Программы: создание в Российской Федерации современной инфраструктуры национальной нанотехнологической сети для развития и реализации потенциала отечественной наноиндустрии.

Поскольку РИНКЦЭ всегда имеет возможность с точки зрения его потенциала как государственного экспертного центра в сфере науки и инноваций перейти к более активному проведению государственной экспертизы в области наноиндустрии, то далее логично привести некоторые новые данные по развитию методологии проведения экспертизы в сфере индустрии наносистем.

Прежде всего, необходимо дать некоторые уже состоявшиеся определения в рассматриваемой государственно-приоритетной области науки, технологии и индустрии, объединенных ключевым термином (приставкой) «нано-».

Основные используемые термины:

Наноиндустрия — интегрированный комплекс производственных, научных, образовательных и финансовых организаций различных форм собственности, осуществляющих целенаправленную деятельность по созданию интеллектуальной и промышленной конкурентоспособной наукоемкой продукции с высоким уровнем добавленной стоимости и ранее недостижимыми технико-экономическими показателями, основанный на высоком научно-образовательном потенциале государства, прогрессивных прорывных и междисциплинарных исследованиях, научно- и экономически обоснованном практическом использовании новых нетрадиционных свойств и функциональных возможностей материалов и систем различной физико-химической природы при переходе к наномасштабам.

Общепринятым является диапазон 10⁻⁻ − 10⁻⁰ м, т. е. от 1 до 100 нм, однако применитель-

Общепринятым является диапазон $10^{-7} - 10^{-9}$ м, т. е. от 1 до 100 нм, однако применительно к наноиндустрии приставка *нано*- является фактически отражением объектов исследований, прогнозируемых свойств продукции и способов их описания, а не просто характеристическим размером базового элемента, идентифицирующего изучаемый или создаваемый объект по геометрическому параметру. Для прогнозирования и использования новых явлений и эффектов при переходе к наномасштабам данный характеристический размер должен рассматриваться в отношении к определенным фундаментальным параметрам материалов и систем, имеющим аналогичную метрическую размерность.

Продукция наноиндустрии — интеллектуальная и промышленная наукоемкая конкурентоспособная продукция с ранее недостижимыми технико-экономическими показателями, создаваемая с широким применением наноматериалов, процессов нанотехнологии и методов нанодиагностики, ориентированная на решение задач обеспечения обороноспособности, безопасности и технологической независимости государства, реализацию социально и экономически значимых национальных проектов, повышение качества и разнообразия современных товаров и услуг.

Нанотехнология — совокупность методов и способов синтеза, сборки, структуро- и формообразования, нанесения, удаления и модифицирования материалов, включая систему знаний, навыков, умений, аппаратное, методическое, метрологическое, информационное обеспечение процессов и технологических операций, направленных на создание материалов и систем с новыми свойствами, обусловленными проявлением наномасштабных факторов.

Наноматериалы — разновидность продукции наноиндустрии в виде материалов, представляющих собой искусственно или естественно упорядоченную систему базовых элементов с нанометрическими характеристическими размерами и особым проявлением физического и (или) химического взаимодействий при кооперации наноразмерных элементов, обеспечивающих возникновение у материалов и систем совокупности ранее неизвестных механических, химических, электрофизических, оптических, теплофизических и других свойств, определяемых проявлением наномасштабных факторов.

Нанодиагностика — совокупность специализированных методов исследований, направленных на изучение структурных, морфологотопологических, механических, электрофизических, оптических, биологических и других характеристик наноматериалов и наносистем, анализ наноколичеств вещества, измерение метрических параметров с наноточностью.

Наносистемотехника — совокупность методов моделирования, проектирования и конструирования изделий различного функционального назначения, в том числе, наноматериалов, микро- и наносистем с широким использованием квантово-размерных, кооперативносинергетических, «гигантских» эффектов и других явлений и процессов, проявляющихся в условиях материальных объектов с наноразмерными характеристическими параметрами базовых элементов.

Кластер в области наноиндустрии — форма кооперации научных, конструкторских, технологических, производственных, инвестиционных и образовательных организаций независимо от их организационно-правовых форм, координируемой государством на межотраслевом уровне и основанной на интеграции и координации их целенаправленной деятельности, определяемой целью получения добавленной стоимости продукции наноиндустрии за счет преимущественного использования результатов интеллектуальной деятельности.

Данные определения стали основой следующего этапа разработки методологии экспертных оценок в рассматриваемой сфере науки и инноваций.

Прежде всего, нужно было еще раз уточнить приоритетные субнаправления в программах развития наноиндустрии. В рамках предложения Роснауки для РИНКЦЭ проведена следующая аналитическая работа.

Подготовлены предложения, оценки и рекомендации, которые могут быть учтены при формировании соответствующих разделов указанных программ.

В приложенных табл. 3-5 приоритетность развития работ в области наноиндустрии предлагается оценить с использованием представленных ниже критериев (K_i , i=1-7), ранжируя составляющие направления работ каждого вида деятельности в области наноиндустрии по степени убывания их важности с точки зрения каждого из рассматриваемых критериев и одновременно оценивая соответствие направлений работ указанным критериям по десятибалльной системе.

Критерии оценки направления работ в области наноиндустрии и наноматериалов:

К1 — обеспечение национальной безопасности, обороны и технологической независимости Российской Федерации;

Экспертная оценка вида деятельности: развитие фундаментальной базы наноиндустрии

	Критерии оценки (ранжирования)														
Направления работ	K	1	K	2	K	3	K4		K5		K6		K7	,	
	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл	
Термодинамика и самоорганизация наносистем – фундаментальные основы	1	4	1	7	1	8	1	10	1	9	1	10	1	4	
Эволюционная физикохимия нанодисперсных веществ	16	1	16	1	16	1	16	1	16	1	16	1	16	1	
Консервативная и диссипативная самоорганизации наносистем, формирование объемных наноструктурированных материалов, создание и изучение новых нановеществ на основе метастабильных кластерных форм	17	1	17	1	17	1	17	1	17	1	17	1	17	1	
Моделирование процессов формирования нано- структур и наноматериалов в квазиравновесных и сильно неравновесных условиях	3	4	3	7	3	8	3	10	3	9	3	10	3	4	
Разработка фундаментальных основ технологий получения нанокластеров металлов с фрактальной поверхностью и изучение их физических, физико-химических, в том числе каталитических свойств		1	17	1	17	1	17	1	17	1	17	1	17	1	
Кристаллохимия наноматериалов — общие закономерности	1	4	1	7	1	8	1	10	1	9	1	10	I	4	
Физико-химическая природа морфологического многообразия наноструктур	16	1	16	1	16	1	16	1	16	1	16	1	16	1	
Выявление векторов, лежащих в основе механизмов, по которым строятся наночастицы	17	1	17	1	17	1	17	1	17	1	17	1	17	1	
Фундаментальные основы кооперативных и транспортных явлений в наносистемах	1	4	1	7	1	8	1	10	1	9	1	10	1	4	

Направления работ					Критер	оии оце	нки (ра	нжиров	ания)					
, manipulation pure 1	KI		K	K2		3	K4		K5		K6		K7	1
·	Ранг	Балл	Рант	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл
Исследование коллективных явлений и электронного транспорта в низкоразмерных проводниках и наноструктурах	17	1	17	1	17	1	17	1	17	1	17	1	17	1
Изучение критических явлений при транспорте несмачивающих жидкостей в неупорядоченных наноструктурированных материалах	17	1	17	1	17	1	17	1	17	1	17	1	17	1
Фундаментальные основы технологий мехатроники	17	1	17	1	17	1	17	1	17	1	17	1	17	ı
Квантовые взаимодействия макроскопических тел и квантовые основы наномеханики	16	1	16	1	16	1	16	1	16	1	16	1	16	1
Физические основы нанометрологии	2	4	2	7	2	8	2	10	2	9	2	10	2	4
Изучение с пересмотром определений единиц измерений в контексте с квантовыми явлениями, изменением физических свойств объектов с уменьшением их размера до наномасштаба	17	1	17	1	17	1	17	1	17	1	17	1	17	1
Информационно-аналитические системы для создания надежных виртуальных моделей нанопроцессов и новых наноструктур с использованием супер-ЭВМ		4	4	7	4	8	4	10	4	9	4	10	4	.4

Экспертная оценка вида деятельности: нанотехнологии

					Критер	оии оце	нки (ра	нжиров	ания)				_	
Направления работ	K	l	K.	2	K	3	K4	4	K5		K6		K	7
	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл
Машиностроительные технологии для механической и корпускулярной обработки с наноточностью	12	3	12	4	12	3	12	7	12	5	12	7	12	6
Физико-химические технологии, основанные на атомно-молекулярной химической сборке и самосборке неорганических и органических веществ	3	7	3	7	3	8	3	8	3	6	3	8	3	6
Зондовые и пучковые технологии, обеспечивающие нанослоевой тотальный синтез, наноразмерные локальные процессы нанесения, удаления и модифицирования вещества	2	8	2	8	2	9	2	7	2	5	2	8	2	8
Биомедицинские технологии для сверхлокальной наноизбирательной диагностики, терапии, хирургии и генной инженерии	2	8	2	8	2	9	2	9	2	8	2	9	2	9
Нанотехнологии в фармакологии, направленный транспорт лекарств	1	10	1	10	1	10	1	10	1	9	1	8	1	10
Технологии мехатроники и создания микросистемной техники	3	7	3	9	3	9	3	6	3	8	3	7	3	8
Технологии создания и обработки композиционных и керамических материалов	12	1	12	3	12	3	12	5	12	4	12	6	12	8
Технологии создания и обработки кристалли- ческих материалов со специальными свойствами	4	5	4	5	4	5	4	4	4	4	4	4	4	5
Технологии создания и обработки полимеров и эластомеров	12	3	12	3	12	3	12	5	12	5	12	6	12	6
Технологии создания мембран и каталитических систем	1	10	1	10	1	10	1	8	1	7	1	7	1	9
Технологии создания биосовместимых материалов	12	1	12	3	12	2	12	4	12	5	12	4	12	4
Нанотехнологии для вооружения и военной техники	10	3	10	3	10	4	10	3	10	3	10	3	10	2

Экспертная оценка вида деятельности: наноматериалы

		_			Крите	рии оц	енки (р	анжиро	вания)		-			
кими свойствами для сверхпрочных, сверхэластичных, рхлегких конструкций, придаваемыми свободным постнием иерархических структур нокомпозиционные и нанодисперсные материалы для сокоэффективной сепарации и избирательного катализа нокомпозиционные материалы с особой устойчивостьк кстремальным факторам для термически-, химически- и дационно-стойких конструкций нокомпозиционные материалы, обладающие «интеллективным» свойствами, включая адаптивность, ассоциальными» свойствами, включая адаптивность, ассоциальность, память и высокочистые вещест с особыми физическими свойствами (сверхпроводящие вистивные, магнитные, метаматериалы и др.) ноструктуры и нанокомпозиции для электронных и фонных информационных систем инокомпозиционные материалы для генерации, преобравания и хранения энергии, в том числе аккумулирования оглощения механической энергии спизиные нанокомпозиционные адаптивные материалы с низ аффективной отражающей или сверхвысокой поглощающей собностью в СВЧ и оптическом диапазонах длин волн ециальные нанодисперсные материалы с максимальное фективным энергопоглощением и энерговыделением, и числе импульсным вые лекарственные препараты и химические вещество бирательного направленного действия без побочныхтокси ских и иных негативных воздействий	K		K	2	K3	}	K	4	K5		K6		K	.7
	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл
Нанокомпозиционные материалы с расширенными механическими свойствами для сверхпрочных, сверхэластичных, сверхлегких конструкций, придаваемыми свободным построением иерархических структур	12	1	12	1	12	3	12	3	12	3	12	4	12	3
Нанокомпозиционные и нанодисперсные материалы для высокоэффективной сепарации и избирательного катализа	12	2	12	2	12	3	12	3	12	3	12	4	12	3
Нанокомпозиционные материалы с особой устойчивостью к экстремальным факторам для термически-, химически- и радиационно-стойких конструкций	12	1	12	1	12	1	12	1	12	3	12	2	12	3
Нанокомпозиционные материалы, обладающие «интеллектуальными» свойствами, включая адаптивность, ассоциативность, память]	9	1	9	1	10	1	7	1	7	1	7	1	9
Функциональные наноматериалы и высокочистые вещества с особыми физическими свойствами (сверхпроводящие, резистивные, магнитные, метаматериалы и др.)	12	1	12	1	12	3	12	3	12	3	12	2	12	3
Наноструктуры и нанокомпозиции для электронных и фотонных информационных систем	2	8	2	8	2	8	2	8	2	9	2	8	2	9
Нанокомпозиционные материалы для генерации, преобразования и хранения энергии, в том числе аккумулирования и поглощения механической энергии	2	8	2	8	2	8	2	8	2	9	2	8	2	9
Специальные нанокомпозиционные адаптивные материалы с низ- кой эффективной отражающей или сверхвысокой поглощающей способностью в СВЧ и оптическом диапазонах длин волн	12	4	12	4	12	4	12	3	12	3	12	5	12	5
Специальные нанодисперсные материалы с максимально эффективным энергопоглощением и энерговыделением, в том числе импульсным	12	1	12	1	12	1	12	1	12	1	12	2	12	2
Новые лекарственные препараты и химические вещества избирательного направленного действия без побочных токсических и иных негативных воздействий	1	01	1	10	1	10	1	10	1	10	1	10	1	10
Нанокомпозиционные биосовместимые материалы для за- мещения тканей и органов	12	3	12	3	12	4	12	2	12	3	12	3	12	4
Немедицинские коммерческие нановещества, воздействующие на человека, фуллерены и оксиды металлов, специальные наноматериалы, применяемые в биоаналитике и биомаркировке	~	-	-	-	-	-	-	-	-	-	-	-	_	-

Экспертная оценка вида деятельности: нанодиагностика

	_				Критеј	рии оце	нки (ра	нжиров	ания)			. ,		· · · · · · · · · · · · · · · · · · ·
Направления работ	К	1	K	2	К	.3	K	4	K5		K6		К	7
	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл
Высокоразрешающие методы контроля структуры, химического состава и геометрии нанообъектов и наноматериалов	1	9	1	7	1	6	1	10	1	5	1	10	1	4
Экспресс-методы регистрации электрических, оптических, магнитных, акустических и других видов полей наноразмерных объектов и их влияния на экосистему	1	9	1	7	1	6	1	10	1	5	1	10	1	4
Специализированное контрольно-диагностическое оборудование для проведения исследований свойств наночастиц, наноструктур и наноматериалов	3	8	3	9	3	9	3	9	3	6	3	8	3	8
Методы и средства выявления и дозиметрии нановеществ	6	1	6	1	6	1	6	1	6	1	6	1	6	1
Методы и средства для определения факторов токсикологического влияния углеродных нанотрубок и оксидов металлов на развитие легочных, сердечно-сосудистых и кожных заболеваний		1	6	1	6	1	6	1	6	1	6	1	6	1
Методы и средства метрологического обеспечения проведения исследований в области нанотехнологий и наноматериалов		9	2	9	2	6	2	8	2	6	2	8	2	7
Взаимодействие биологических объектов с наноструктурами и использование результатов взаимодействия в диагностике	-	8	2	10	2	9	2	7	2	8	2	10	2	7

Экспертная оценка вида деятельности: наносистемы (наноустройства)

					Крите	рии оце	нки (ра	нжиров	вания)					
Направления работ	K1	1	K2		КЗ		K4		K5		К6		K7	
	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл	Ранг	Балл
Нанохимические компоненты (сорбенты, катализаторы, насосы, реакторы) для высокоэффективной очистки, избирательного сверхскоростного высокопроизводительного синтеза, атомно-молекулярной инженерии	7	1	7	I	7	1	7	1	7	1	7	1	7	1
Наноэлектронные компоненты (элементная база) для сверхинтегрированных сверхмощных устройств наноэлектроники, сверхскоростных систем генерации, хранения, передачи и обработки информации	ı	10	1	10	1	10	1	10	1	8	1	9	1	9
Нанооптические компоненты (элементная база — излучатели, фотоприемники, преобразователи) для энергетически эффективной светотехники, систем сверхскоростной «сверхплотной» высокопомехозащищенной регистрации, передачи и обработки информации		8	5	9	5	8	5	7	5	5	5	8	5	7
МЭМС, МОЭМС для биомедицинских применений, сосудистые роботы, устройства для неинвазивной хирургии	2	6	2	. 9	2	9	2	6	2	7	2	8	2	8
Специальная техника, новые системы вооружений на основе МЭМС, МОЭМС	2	10	2	10	2	9	2	5	2	6	2	8	2	8
Микро- и наноинструмент для процессов атом- но-молекулярной инженерии	1	10	1	10	1	10	1	4	1	8	1	10	1	8
Нанотехнологические устройства аккумулирования и поглощения механической энергии	7	1	7	1	7	1	7	1	7	_1	7	1	7	1

- К2 перспектива повышения конкурентоспособности российской экономики;
- КЗ уровень новизны результатов;
- К4 масштабность потенциальных областей применения;
- К5 социально-экономическая значимость результатов;
- К6 обеспечение сохранения и развития научно-образовательного потенциала страны;
- К7 перспективы и экономическая эффективность коммерциализации полученных результатов.

Процедуру ранжирования можно проводить следующим образом: на первое место ставится наиболее важное направление работ из анализируемого перечня по каждому критерию оценки, на второе место — следующая по важности работа и т. д.

Одинаковый ранг может быть присвоен равным по важности направлениям работ среди анализируемого перечня по рассматриваемому критерию оценки.

Соответствие направлений работ каждому из указанных критериев оценивается по десятибалльной шкале:

- 8-10 баллов полное или почти полное соответствие направления работ критерию оценки;
 - 5-7 значительное (преимущественное) соответствие направления работ критерию оценки;
 - 2-4 частичное соответствие направления работ критерию оценки;
 - 1 нет соответствия направления работ критерию оценки.

Результаты ранжирования и балльной оценки направлений работ отражены в таблицах № 3-7.

В конце таблицы в строке «Другие направления работ» могут отражаться направления работ, не вошедшие в перечень, указанный в таблицах, но которые следует отнести к приоритетным.

Авторы полагают, что расставленные ими в таблицах по рангу и баллам субнаправления работ могут быть полезными при управленческих решениях Роснауки в рамках реализации программ по развитию наноиндустрии и при функционировании исполнительных дирекций этих программ и вновь созданных государственных корпораций в сфере наноиндустрии.

- **Выводы.** 1. Расмотрен массив данных по научно-техническому анализу конкурсных проектов, представленных на конкурсы на проведение НИР и выполнение технологических и опытно-конструкторских работ в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007—2012 годы» по направлению «Индустрия наносистем и материалы».
- 2. Предложены и рассмотрены новые методологические элементы программного обеспечения этого перспективного и приоритетного направления. Расставленные в таблицах по рангу и баллам конкретные субнаправления работ могут быть полезными при принятии управленческих решений Роснаукой в рамках реализации программ по развитию наноиндустрии.

Список литературы

- 1. **Севастьянов Ю.С.**, **Победимский Д.Г.** Основные принципы проведения комплексной экспертизы научно-технологических разработок при их коммерциализации. Научно-технический сборник «Научно-техническая информация». 4-я конференция аналитиков и экспертов России, стран СНГ и зарубежных фирм //Серия 1. Организация и методика информационной работы. М.: ВИНИТИ РАН и Минпромнауки России. 2002. № 11. С.16—18.
- 2. Отчет о НИР по теме «Разработка методики проведения независимой экспертизы научно-технических материалов ФЦНТП «Исследования и разработки по приоритетным направлениям развития науки и техники» на 2002—2006 гг.» Исп. Ю.С. Севастьянов, В.П. Голубев, Д.Г. Победимский и др. М.: ФГУ НИИ РИНКЦЭ, Роснаука, Минобрнауки России; № 312 К. 2005. 112 с.